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Abstract:

Effects of the cannabinoid antagonist rimonabant on the EEG were investigated in healthy, non-epileptic rats. The drug was adminis-

tered orally at 30 mg/kg/day for 3 weeks. The EEG was recorded continuously. In 3 out of 13 rats, limbic convulsive seizures, which

were not related to the time of drug administration, were observed after 5–8 days. We hypothesize that an accumulation of micro-

injuries in the brain is responsible for these “spontaneous” seizures.
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Introduction

The effects of the long-term use of cannabinoids are

of current scientific and clinical interest. Rimonabant

(SR141716A, Acomplia®, Zimulti®), which has

been licensed for the treatment of overweight adult

patients [11], was withdrawn from the market in Janu-

ary 2009 because a number of cases of depressive dis-

orders had been reported that were ascribed to its use

[12]. However, a plea for the continuation of clinical

research on cannabinoid antagonists was immediately

heard [7] because the drugs have high therapeutic po-

tential for the treatment of metabolic disorders. With

respect to epilepsy, it was stated that rimonabant

should be used with caution [11]. In line with this rec-

ommendation, Katona and Freund [16] expressed

their concern that cannabinoid antagonists might

counteract the beneficial effects of endocannabinoids

in individuals with a history of convulsions. Indeed,

the cannabinoid system has been shown to have a vi-

tal role in dampening the effects of pro-epileptic

events and vice versa: agonists of cannabinoid recep-

tor type 1 (CB1) retard the development of kindling

[3]. In the pilocarpine rat model for epileptogenesis,

in which chronic seizures develop days after an ini-

tially acute status epilepticus, cannabinoid agonists

completely abolished the late “spontaneous” epileptic

seizures, whereas rimonabant increased both the sei-

zure frequency and duration [31]. Mutant mice, lack-

ing CB1 receptors in the hippocampus, are more vul-

nerable to kainic acid-induced seizures than their
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wild-type counterparts [1, 18], while endocannabi-

noid enhancement protected against kainic acid-

induced seizures [15]. In addition, rimonabant in-

duced status epilepticus-like activity in a neuronal

culture model of acquired epilepsy [5].

Herein, we report that 23% of healthy rats, which

neither were prone to epilepsy nor had spontaneous

seizures of any type, experienced severe convulsive

seizures after a few daily doses of the cannabinoid an-

tagonist rimonabant. Therefore, our observation com-

pels us to issue a warning about de novo seizures in

non-epileptic but healthy subjects using cannabinoid

antagonists.

Experimental procedures

The study was performed in accordance with the

guidelines of the European Community for the use of

experimental animals and was approved by the ethical

committee for animal studies (RUDEC-2008-020).

Adult female Crl:WI Wistar rats (Charles River Labo-

ratories, Sulzfeld, Germany) that were 8–9 weeks old

at the start of treatment were administered daily, by

gavage, pure vehicle (a semi-solid oral solution with

Cremophor) or vehicle containing rimonabant at a dose

of 30 mg/kg. Recordings of controls were taken from

our database to reduce the number of animals needed.

The half life of rimonabant in rats is 7.3 h. With

once-daily dosing, steady state pharmacokinetics is

reached within one week [11]. Female animals were

used because they have a higher bioavailability of the

drug than males [11]. Rimonabant was kindly donated

by Solvay Pharmaceuticals Weesp, The Netherlands.

Two experiments were conducted. In the first ex-

plorative experiment, rats (n = 6 with rimonabant)

were observed daily at various times during the day

for 20 days. The observed behavioral seizures in this

experiment caused us to conduct the next experiment.

In this second experiment, rats (n = 13) were equipped

with a permanent tripolar EEG electrode allowing

free movement during recording. The active electrode

was in the hippocampus, mm relative to bregma: AP:

–4.2; ML: –3.6; and –4.1 under skull surface; the ref-

erence and ground electrodes were located above the

cerebellum. EEGs (band pass 1–100 Hz, 512 sam-

ples/s) were registered continuously from day 0 (24 h

baseline) until days 11 to 21 of treatment. Video re-

cordings were made simultaneously.

Results and Discussion

In the first experiment, two episodes of convulsions

were observed in one of the six rats (on days 15 and

20). In the second experiment, 3 out of the 13 animals

showed convulsive seizures, simultaneously behav-

iorally and on the EEG (Fig. 1a–e). We observed se-

vere bilateral clonic muscle twitches of the forelimbs

and the facial area and occasionally of the hind limbs,

with full rearing in a kangaroo-like posture with the

neck curled backwards and a rigid curled tail, Racine

stage 5 [26]. In one animal, three short seizures were

observed on day 5, each with a duration of about half

a minute. In another animal, 6 seizures were observed

on day 8. The duration of these seizures varied be-

tween 20 and 125 s (Fig. 1). A third animal had three

seizures: one on day 5 with a duration of about 1 min,

one on day 8 and one on day 9, each with a duration

of about 3 min. The occurrence of the seizures was

scattered over day and night between 3 and 23 h after

drug administration. It is notable that multiple interic-
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tal spikes were observed in the animal with 6 seizures

(Fig. 1a and 1f). In our database with matched controls,

none of the 14 animals gavaged with pure vehicle for

up to 6 months showed any behavioral seizure during

this time period, nor was any seizure seen in repeated

24 h EEG recordings.

The number of animals with seizures in the

rimonabant group (3 out of 13 animals) was higher

than that in the control group (0 out of 14 animals)

(Barnard’s test comparing two independent binomial

proportions, one sided p = 0.04, StatXact, 9) [21, 27].

European Medicines Agency (EMEA) documents

have reported behavioral convulsions in rodents and

in macaques, but these documents neither confirm nor

deny pre-existing seizures or seizure susceptibility

[11]. Moreover, the epileptic nature of these convul-

sions was not confirmed by EEG recordings. It has

even been stated that no adverse effects of rimonabant

treatment were observed on the EEG patterns. We,

however, not only observed spontaneous behavioral

seizures but also confirmed their epileptic nature by

EEG. To ascribe a cause to the seizures, in the EMEA

documents, it is stated that in some, but not all, cases,

the initiation of convulsions appeared to be associated

with procedural stress such as handling of the animals

[11]. In our study, however, the seizures had no tem-

poral relationship to the administration of the drug or

with any other observable external stress.

We propose another cause for the observed convul-

sions, which stems from the mechanism of the endo-

cannabinoid system. It has been postulated that active

CB1 receptors on excitatory terminals provide neu-

rons with on-demand protection against the conse-

quences of a variety of injuries [8, 20, 22–24, 28]. In

view of this, we hypothesize that a normally function-

ing brain is subject to continuous micro-threats of, for

example, oxidative or hypoxic nature and that these

threats are warded off by the endocannabinoid sys-

tem. Elimination of this protection system might lead

to an accumulation of micro-injuries, and these

micro-injuries might lead to spontaneous seizures by

triggering an endogenous kindling process. This hy-

pothesis would explain the individual differences in

the expression of the seizures during treatment with

the CB1 antagonist rimonabant (seizures were ob-

served in only 3 out of 13 animals) as well as the dif-

ference in the time delay after starting the treatment

(5 to 9 days in the measured group). This hypothesis

also fits in with the observation that the incidence of

epilepsy in humans increases with age, especially the

incidence of “idiopathic” seizures [4, 10]. It has been

suggested that the etiology of age-related seizures is of-

ten cryptogenic rather than idiopathic; thus, an under-

lying non-genetic cause is suspected [17]. Since the

limbic system is especially vulnerable to injuries [19],

it is not surprising that it was limbic seizure that was

observed in our animals. In humans, age-dependent

seizures are indeed often of a limbic nature [14, 25].

Results from animal models for brain injuries are in

line with this hypothesis as well. In a model of chronic

brain injury, viral encephalopathy, rimonabant induced

spontaneous seizures [29]. Moreover, impairment of en-

docannabinoid synthesis increased the seizure suscepti-

bility [30]. G protein G�q/G�11 knockout mice, which

have impaired endocannabinoid synthesis, showed

spontaneous epileptic seizures. It is notable that both the

frequency of seizures in each animal and the number of

affected animals increased with age [30].

Numerous reports show that the role of the endo-

cannabinoid system is far from clear, and contradic-

tory results have been reported concerning its protec-

tive role; e.g., although controlled modulation of fatty

acid amide hydrolase (FAAH), the enzyme metabolizing

the breakdown of endogenous cannabinoids, promotes

protective cannabinergic signals, FAAH knockout mice

exhibit proconvulsant activity [15]. Moreover, in neona-

tal animals both proconvulsant [2] and protective effects

[9] of CB1 receptor blockade have been reported.

In clinical trials reported in the EMEA documents,

no difference was seen in the incidence of seizures in

patients receiving rimonabant or placebo [11]. How-

ever, the US Food and Drug Administration (FDA)

document NDA 21-888 [13] mentions 11 possible

cases of seizures among participants in clinical trials.

Rimonabant has been withdrawn from the market, but

new cannabinoid antagonists will enter development

[6, 7]. Clinical vigilance for any future clinically ap-

plied CB1 antagonist should also focus on this severe

adverse effect, even in non-epileptic human users. We

hypothesize that the endocannabinoid system is cru-

cial in the protection of the normal brain against the

development of seizures.
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